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Spin relaxation is a sensitive probe of molecular structure and
dynamics. Correlation of relaxation time constants, such as T1 and
T2, conceptually similar to the conventional multidimensional spec-
troscopy, have been difficult to determine primarily due to the ab-
sense of an efficient multidimensional Laplace inversion program.
We demonstrate the use of a novel computer algorithm for fast
two-dimensional inverse Laplace transformation to obtain T1–T2

correlation functions. The algorithm efficiently performs a least-
squares fit on two-dimensional data with a nonnegativity con-
straint. We use a regularization method to find a balance between
the residual fitting errors and the known noise amplitude, thus
producing a result that is found to be stable in the presence of
noise. This algorithm can be extended to include functional forms
other than exponential kernels. We demonstrate the performance
of the algorithm at different signal-to-noise ratios and with differ-
ent T1–T2 spectral characteristics using several brine-saturated rock
samples. C© 2002 Elsevier Science (USA)
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I. INTRODUCTION

Multidimensional correlations have been the central concept
in modern NMR spectroscopy for studies of molecular structures
and dynamics (1). The technical advances in computer hardware
and efficient algorithms (such as fast Fourier transform) have
helped to make the handling of multidimensional data a rou-
tine task. Relaxation properties, such as T1 and T2, may also be
used to identify molecular species and to study their dynamics.
The multidimensional correlation functions of such parameters
are of great interest (2, 3). Experiments to obtain such corre-
lation functions are entirely analogous to the multidimensional
NMR spectroscopy methods in that the signal is measured as a
function of two or more independent variables (such as times)
allowing the spin system to evolve under different relaxation
mechanisms. However, the analysis of such relaxation correla-
tion data requires a multidimensional inverse Laplace transform.
The difficulty in performing this analysis (3) has greatly impeded
the application of this method.
1 To whom correspondence should be addressed. E-mail: song@
ridgefield.sdr.slb.com.
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We will illustrate this general issue using the T1–T2 correlation
experiment as an example. The data can be acquired using a con-
ventional inversion–recovery experiment detected by a CPMG
pulse train (2, 3). This pulse sequence is shown in Fig. 1. The
recovery time, τ1, and the echo time τ2, are two independent vari-
ables and the acquired data can be written as a two-dimensional
array, M(τ1, τ2). Over the time period τ1, the spin magnetization
decays along the z axis, a T1 process. However, during τ2, the
decay is due to T2 . This signal relates to the probability density
of T1 and T2 via an integral (3)

M(τ1, τ2) =
∫ ∫

(1 − 2e−τ1/T1 ) e−τ2/T2F(T1, T2) dT1dT2

+ E(τ1, τ2), [1]

where E(τ1, τ2) is the experimental noise. The function F(T1,
T2) corresponds to the probability density of molecules with
relaxation times of T1, T2. Therefore, F(T1, T2) ≥ 0 for all T1

and T2 . The part of the integrand (1−2e−τ1/T1 )e−τ2/T2 that relates
T1,2 and τ1,2 respectively is called the kernel.

One specific application of the T1–T2 correlation spectrum is
to obtain the T1/T2 ratio for the study of the molecular mech-
anisms of surface relaxation, particularly in porous materials
(4, 5). In a previous study on water saturated sedimentary rocks
(6), separate measurements of T1 and T2 relaxation were made
and an average T1/T2 ratio was extracted from a comparison of
the corresponding T1 and T2 distributions. This simple method
works only when the T1 and T2 distributions are similar. On the
other hand, if one can measure F(T1, T2), the average T1/T2

ratio can be calculated by integration. What is more important
is that F will enable us to identify different molecular species
with distinct T1/T2 ratios. This quantity is of great interest in
the study of tissues in organisms (2, 3).

Equation [1] is an example of a broad class of Fredholm in-
tegrals of the first kind that is frequently encountered in image
restoration and other applications (7). For example, in image
processing, the kernel may correspond to a blurring mechanism.
It is well known that inverting Fredholm integrals with smooth
kernels is an ill-conditioned problem in the sense that a small
change in M will cause a large change in F . The solution for
1090-7807/02 $35.00
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FIG. 1. The pulse sequence used for the T1–T2 correlation experiments.
All pulses are 180◦ pulses except for the second pulse being 90◦. Echo signals
were detected at midway between two adjacent 180◦ pulses. CPMG signals were
collected for typically 30 values of τ1. The phases used were, for the first 180◦
pulse: 0, 180; for the 90◦ pulse: 0, 0, 180, 180; and for the 180◦ pulses in the
CPMG train: 90. The acquisition phase followed that of the 90◦ pulse.

Fredholm integrals is often obtained with certain assumptions
about the character of E and F . For example, F is assumed to
be smooth.

There are several algorithms for inverse Laplace transform
in one dimension (8–10). However, the straightforward exten-
sion of such algorithms to two-dimensions makes an enormous
demand on computer memory and speed and has been accom-
plished only on a Cray (3). It would be very desirable to develop
a method that can be used on desktop computers.

Our previous publication (11) described an efficient algorithm
to solve this problem and we implemented it on a SUN Sparc
workstation. The algorithm was used to examine several simu-
lated data sets with different features in the T1–T2 distribution. It
was demonstrated that this algorithm performed well and that the
results for F were stable against different realizations of noise.
In this paper, we will first review the essential aspects of the
algorithm and then focus on the use of the algorithm to analyze
experimental data. This is an important test of the algorithm be-
cause of the potential systematic noise present in experimental
data.

II. BRIEF REVIEW OF THE ALGORITHM

We now summarize the mathematical model considered here
and in Ref. (11). The data M relates to the kernel function
through a Fredholm integral of the first kind

M(τ1, τ2) =
∫ ∫

k1(x, τ1)k2(y, τ2)F(x, y) dxdy + E(τ1, τ2),

[2]

where E(τ1, τ2) denotes the experimental noise that is assumed
to be additive, zero mean, white Gaussian noise. The objective is
to estimate F subject to the nonnegativity constraint: F(x, y) ≥
0 for all x and y. Equation [1] is a special case of Eq. [2].
Because of the similarity with conventional two-dimensional
spectroscopy, we shall call F(x, y) the spectrum of x and y.

Equation [2] can be approximated by a discretized matrix
form
M = K1 F K ′
2 + E, [3]
T AL.

where matrices K1, K2, and F are discretized version of k1, k2,
and F respectively, and with dimensions N1 × Nx , N2 × Ny,

and Nx × Ny . The data matrix M is often large and typically
highly redundant.

Inversion of Eq. [3] is in general ill-conditioned in the sense
that a small change in M may result in a large change in F . The
general strategies to solve this problem have been discussed ex-
tensively in the mathematical literature (12). Numerical recipes
(13) and other NMR literature (9, 10, 14) are a good introduc-
tion. One technique uses regularization and obtains a fit to the
data through minimization of the expression

‖M − K1 F K ′
2‖2 + α‖F‖2, [4]

where ‖.‖ denotes the Frobenius norm of a matrix. The first term
measures the difference between the data and the fit. The second
term is a Tikhonov regularization and its amplitude is controlled
by the parameter α. The regularization term is a measure of
the desired smoothness in F and makes the inversion less ill-
conditioned. However, it may cause a bias to the result. When
α is chosen such that the two terms are comparable, the bias is
minimized and the result is stable in the presense of noise. When
α is smaller than the optimal value, the result becomes unstable.

In order to accelerate the minimization of Eq. [4] we exploit
the separable kernel structure for an efficient data compression
using independent singular value decompositions (SVD) of K1

and K2,

K1 = U1�1V ′
1, [5]

where �1 is a diagonal matrix with singular values in a descend-
ing order, U1 and V1 are unitary matrices. �1 is the property of
K1 and the singular values typically decay quickly. We limit our
algorithm to the subspace spanned by the typically 8–10 largest
singular values for each of K1 and K2, respectively. This results
in products of the singular values of K1 and K2 ranging over
three orders of magnitude. Such a subspace is adequate for the
limited signal-to-noise (S/N) ratio of experimental data. Using
SVD of K1 and K2, Eq. [4] can be rewritten in an identical struc-
ture but with the compressed data M̃ = U ′

1 MU2 and kernels of
much smaller dimensions, thus avoiding large memory require-
ments. Often, a total of about 50–100 variables are used in the
subsequent optimization step.

In contrast without compression, if K1 and K2 were to be com-
bined into one matrix K , Eq. [3] is restated in a one-dimensional
form,

M = K F + E, [6]

where M, F, and E are vectors obtained by lexicographically or-
dering matrices M , F , and E , respectively. The dimension of K
for the above equation would be (N1 N2)× (Nx Ny). For a typical

T1–T2 correlation experiment with N1 = 4000, N2 = 30, Nx =
100, and Ny = 100, the dimension of matrix K is therefore
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1.2 × 105 by 104. Thus, performing SVD of K would require
large amount of memory and CPU time, and is impractical. For
example, English et al. (3) required a CRAY supercomputer to
estimate a coarsely discretized density function (Nx = Ny =
35) even from a small (N1 = 50, N2 = 50) data set.

In Ref. (11), we solved this particular class of the two-
dimensional Fredholm integrals, such as Eq. [3], in three main
steps. In the first step, the data is compressed using SVDs of the
kernels, exploiting the tensor-production structure of the ker-
nel, as discussed previously. In the second step, the constrained
optimization problem is transformed to an unconstrained opti-
mization problem in typically a lower dimensional space. This
step uses a method adapted from the Butler, Reed, and Dawson
(BRD) algorithm (15). The dimensionality of the vector space
for the unconstrained optimization problem equals the size
of the compressed data. In the third step, the optimal am-
plitude of the regularization term (α) was chosen by BRD
(15) or S-curve method (10). The essence of both of these
methods for choosing α is to find the most stable solution
with the fit error ‖M − K1 F K ′

2‖2 similar to the known noise
variance.

III. EXPERIMENTAL

T1–T2 correlation experiments were performed on bulk water
and several water saturated rock samples using a Maran NMR
spectrometer (Resonance Instruments, UK) at a proton reso-
nance frequency of 2 MHz. The pulse sequence is depicted in
Fig. 1. Typically, data for 30 values of τ1 and 4096 τ2 points
were acquired in a two-dimensional array. τ1 varied logarithmi-
cally from 10 µs to a few seconds. The values of τ2 were equally
spaced with a step size of typically 200 µs. A minimum of 64
scans were accumulated to improve the signal-to-noise ratio.
The wait time between successive scans was 5 s and a complete
2D experiment can take two or three hours.

Our sedimentary rock samples were 20 mm in diameter and
38 mm in length, saturated with brine. These rocks generally
contain a wide range of pore sizes so that the T1 and T2 distri-
butions are broad (16). The five samples used in this paper were
chosen to illustrate several aspects of the inversion algorithm
and they are listed in Table 1.

TABLE 1
A List of the Samples Used and Their T1–T2 Characteristics

Sample S/N Spectral characteristics

Indiana limestone 95 well extended distribution
Bulk water 79 good signal, a test of the resolution
Nugget sandstone 27 low porosity and poor signal, resulting

in a broad distribution
Oolitic limestone 75 two water populations with different T1/T2 ratios
Berea 500 sandstone 72 relatively narrow main peak and an extended tail
Note. The signal-to-noise ratio (S/N) is defined as the maximum signal divided
by the noise variance.
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FIG. 2. Echo signals as a function of τ1 and τ2 for a Nugget sandstone
obtained using the pulse sequence in Fig. 1. The decays are shown for τ1 of 0.2,
10, and 2000 ms.

In Fig. 2, τ2 decays for several values of τ1 are shown for the
Nugget sandstone sample. Existence of fast and slow relaxations
is apparent from this graph. In particular, for τ1 = 10 ms, the
fast relaxing components have already recovered substantially
to give rise to a positive signal at early τ2 while the long T1

components remain negative.

IV. RESULTS

Figure 3 presents the T1–T2 spectrum for a sample of Indiana
limestone showing a narrow ridge-like peak in the center of the
graph. The range of T1 and T2 is approximately one and half
orders of magnitude from 0.03 to 1 s, owing to its wide range
of pore structures ranging from micrometer-size micropores to
large vugs with millimeter dimension. It is remarkable that this
ridge is closely parallel to the line for T1 = T2 , meaning that
all the water molecules in this rock essentially have an identical
T1/T2 ratio. This is consistent with the notion that the relaxation
in this rock is caused by a single surface mechanism throughout
the sample and the distribution of T1 and T2 is due to the variation
of local surface-to-volume ratio, or pore sizes (5, 16).

From this 2D spectrum, one may obtain the 1D spectra of T1

and T2 by integrating the appropriate dimension. Such projected
T1 and T2 distributions are compared with the corresponding
T1 and T2 distributions obtained by conventional inversion re-
covery and CPMG sequence in Figs. 4A and 4B. Although the
overall T1,2 distributions are similar, those obtained from the 2D
spectra contain more details. This suggests that 2D data might
intrinsically have more information than the 1D data because
more experiments are included.
Also, by integrating the 2D spectrum, we obtained the distri-
bution of the T1/T2 ratio, Fig. 4C. The narrow distribution of
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FIG. 3. The T1–T2 correlation spectrum for Indiana limestone in (A) a sta
amplitude. The line in (B) indicates T1 = T2.

the T1/T2 ratio is consistent with the narrow ridge in the 2D
spectrum. Note that this method to measure T1/T2 ratio applies
to arbitrary distributions of T1 and T2 .

For this rock, the ridge is rather narrow. It is important to ex-
amine whether this width is an intrinsic rock property or whether
it is broadened by the inversion algorithm due to finite S/N ratio.
For this purpose, we have measured the response of bulk water,
doped with NiCl2 to reduce the relaxation times. In this sample,
we expect single exponential decays and it can be used to test
the limit of the linewidth of the obtained T1–T2 spectrum due to
finite signal-to-noise ratio.

Figure 5 shows the T1–T2 spectrum for bulk water, displaying
a single peak at T1 ≈ T2 ≈ 0.1 s. The peak in the 2D spec-
trum centers at T2 = 0.091 s and the base of the peak extends
from T2 = 0.076 to 0.11 s. At half the peak height, the width
is 60% of that at the bottom. The width along the T1 dimension
is similar to that of the T2 dimension, despite more τ2 points.

This result shows that with the given finite signal-to-noise ra- low-amplitude bumps at the ends of the main ridge are likely to

tio, it is mathematically impossible to distinguish decays with a

0

T1 DistributionT2 Distribution

T2 (s) T1 (s)
0.1 1 10

T1 / T2 distribution

T1 / T2

CBA

10110010-110-210-310010-110-210-3

be residual artifacts due to noise on the spectrum.
FIG. 4. (A, B) Comparison of T1 and T2 spectra for Indiana limestone, obtaine
for the inversion–recovery and CPMG sequences (solid lines). (C) The distributio
k plot and (B) a density plot with a linear gray scale from zero to maximum

single relaxation time constant from a narrow distribution of the
relaxation time constant. Such dependence on signal-to-noise
ratio has been demonstrated on the simulated data sets in our
previous report (11). Compared to this, the T2 width at half in-
tensity for the Indiana limestone sample is approximately 2.6
times that for the bulk water sample. Although the total S/N
ratio as defined in Table 1 is similar for the two samples, the
Indiana limestone sample has a much broader spectrum than
that of the water sample, thus the spectral amplitude at certain
T1 and T2 is much lower than that of the water sample. Thus,
it is possible that the broad linewidth of the Indiana limestone
sample has contribution from the finite S/N ratio.

The effect of a reduced signal-to-noise is further illustrated
with the Nugget sample of low porosity, 6% by volume. The
spectrum (Fig. 6) shows a very extended ridge structure over
two orders of magnitude. In addition, the width is much broader
than for the water and Indiana limestone samples. The several
d by integrating the 2D spectra (dashed lines) and by conventional 1D inversion
n of T1/T2 ratio obtained by integrating the 2D spectrum.
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FIG. 5. The T1–T2 correlation spectrum for bulk water.

The spectrum of the oolitic limestone sample presents an in-
teresting pattern, shown in a surface plot and a contour plot
(Figs. 7A and 7B). Two separate peaks and a shoulder at
T2 ≈ 20 ms are clearly observed. The two bumps along the
edges of T1 and T2 axes are likely artifacts due to noise. The
major peak at long T1 and T2 is approaching the line of T1 = T2

and in fact, T1/T2 = 1.5 at the top of the peak. In contrast, the
peak at smaller T1 and T2 and one shoulder fall along the line of
T1 = 4T2. The presence of separate peaks is a strong indication
that there are two distinct environments for water in this rock.

The components with small T and T are from water with its The solid line in Fig. 7 shows the possible values of T and T
1 2

relaxation dominated by surface mechanism while the long T1
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assuming T s
1 /T s

2 = 4.5 and it is in good agreement with the
1 2

of the sum of surface and bulk contributions to T1 and T2. The inset is a thin-sectio
micrometers and the gray regions are open pores.
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FIG. 6. The T1–T2 correlation spectrum for Nugget sandstone.

and T2 peak has a balance of contributions from surface and
bulk. Since the measurement was performed at low frequency,
2 MHz, the internal field effect causing additional T2 relaxation
can be neglected. Assuming that the bulk relaxation contribution
Tb is 2 s for both T1 and T2 , the observed relaxation rates are a
sum of surface (T s

1,2) and bulk contributions:

1

T1,2
= 1

T s
1,2

+ 1

Tb
. [7]
1 2 1 2

n micrograph of the oolitic rock. The dark elliptical structures are grains of 200
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FIG. 8. T1–T2 correlation spectrum for Berea 500 sandstone.

observed data. This analysis confirms that the lower T1/T2 ratio
for the long T1 and T2 component is the result of bulk contribution
and the results are consistent with surface relaxation properties
that are uniform throughout this rock.

The presence of two distinct pore environments is evident in
the micrographs of 30-µm thin sections of the rock, shown in
the inset of Fig. 7. The dark circular structures are porous grains
(ooids), and inter-ooid pores are about 100 µm (the gray areas).
The micropores inside the grains are apparently of much smaller
sizes, thus they have a higher surface contribution to relaxation.
From the result of a single T s

1 /T s
2 ratio for surface relaxation,

one might infer that there is only one source of surface relaxation
for both types of pores (intragranular and intergranular) because
they are bound by the same solid material. We note that this
value of T s

1 /T s
2 is considerably larger than is typically observed

for sandstones and carbonate rocks (6).
The last sample is a Berea 500 rock from Berea, Kentucky.

The T1–T2 spectrum, Fig. 8, shows a narrow ridge, similar to
that of the Indiana limestone sample. However, the majority of
the signal is concentrated at T1 = 0.6 s and T2 = 0.5 s, with
a low amplitude tail at the regions of smaller T1 and T2 . This
type of rock is often used as a model sample for petrophysical
studies due to the homogeneity of its grain and pore sizes. Such
homogeneity is the origin of the relatively narrow peak in the
T1–T2 spectrum and is also reflected in the one-dimensional
spectrum of T1 or T2 . From a signal processing point of view,
this type of spectrum presents particular difficulties in assessing
the errors of the spectral features (9, 17). Since the fit error is
dominated by the main peak, the algorithm chooses α so that the
main peak is stable. However, the lower amplitude tail extending
to smaller T1 and T2 can still vary substantially due to noise. This
instability is reflected in the irregular curving and shape of the

tail deviating from the line of constant T1/T2. This is primarily
the result of our use of a single regularization amplitude α.
T AL.

V. DISCUSSIONS

A. Inversion Stability

Because the inverse Laplace transform is an ill-conditioned
problem, the resulting spectrum can be strongly affected by
noise. When the underlying problem can be formulated in
a more restricted form using fewer parameters, it might be
preferable to use a specialized fitting procedure. For a general
purpose Laplace inversion of data with a finite S/N ratio, the
resolution must be reduced to obtain a stable solution. In other
words, there is not enough information in the data to determine
the spectrum better than the stable spectrum.

In our algorithm, stability is obtained by using regularization
and the procedure for the choice of the optimal regularization
parameter, α. The principle for the choice of α is that the regu-
larization term α‖F‖2 be comparable to the residual error. Typ-
ically, α is larger for data with lower signal-to-noise ratio, as
demonstrated in our previous report (11). Here, we will further
demonstrate the stability of the spectrum by using data with
different realizations of noise. In Fig. 9, we show the inversion
spectra of the Indiana limestone and Berea 500 samples from
data sets that were obtained by adding white noise to the fits
obtained from the spectra in Fig. 3 and Fig. 8, respectively. The
amplitude of the added noise was the same as that in the original
data. The BRD method was used to obtain the optimal values of

E Berea  α = 0.78D Berea α = 1.3 F Berea α = 0.36
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FIG. 9. The T1–T2 correlation spectra for the Indiana limestone (A, B, C)
and Berea 500 samples (D, E, F) with three different noise realizations. The
noises of the same amplitude as that in the original signals were created for each
realization and added to the fits obtained from the spectra of Figs. 3 and 8. BRD
method was used to find the optimal α for each inversion and its value is listed
in the figures. For both samples, the main peaks appear to be very stable in all
realizations, however, the low amplitude tails vary significantly at a few percent

level. In all figures, nine equally spaced contours are used from 1 to 90% of the
maximum amplitude.
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α that are listed in the figures. We observe small changes of the
optimal α for different noise realizations, but the main features
of the spectra remain unchanged. The variation of the spectra
appears only at an amplitude of a few percent of the maximum
spectral amplitude.

B. Systematic Errors

Systematic errors can pose another difficulty for this algo-
rithm since specific characteristics of the noise are assumed.
For example, the noise, E , is assumed to be additive with a
white frequency spectrum. Other types of noise, for example,
the ringing noise from the rf pulses are not modeled by Eq. [2]
and the algorithm will usually achieve a fit error χ larger than
the variance of the white noise. This will also be true if the un-
derlying spin dynamics cannot be described by our exponential
kernels. In these cases, the effect of the systematic errors on the
resulting spectrum depends sensitively on the exact nature of the
errors.

An experimental problem often encountered is that the 180◦

pulse is inaccurate, so that the kernel changes to [1 − (2 −
δ)e−τ1/T1 ]e−τ2/T2 . This problem can be resolved in two ways.
The first method is to subtract from each CPMG decay data at
certain τ1 the CPMG decay at a τ1 value that is at least 3–5 times
the longest T1, M(τ1 → ∞, τ2):

m ≡ M(τ1, τ2) − M(∞, τ2). [8]

This changes the kernel correspondingly to e−τ1/T1 e−τ2/T2 . This
method is preferable if one can measure M(∞, τ2) reliably. The
second method is to add an extra constant column in K1 for
T1 = ∞. Correspondingly, one column is added to F and the
resulting amplitude of this column after the inversion will be
related to the error of the inversion pulse angle.

Other types of systematic errors, such as pulse ringing and
field inhomogeneities are dependent on the spectrometer hard-
ware and are more difficult to model. One may inspect the orig-
inal data for signs of such problems, in particular, by examining
the imaginary channel after phase rotation. For all the data sets
presented in this report, problems due to systematic errors were
not apparent by inspecting the original data. However, the data
for the Indiana limestone sample showed a problem in the con-
vergence of α using the BRD method and the fit error at very
small α was slightly larger than that estimated from random
noise. This is likely due to some systematic errors with an am-
plitude comparable to that of the random noise. In this case, the
optimal α was chosen by numerically calculating the fit error
χ (α) of the compressed data for a series of α and then finding
αheel by

∂ log χ

∂ log α

∣∣∣∣
αheel

= 0.1. [9]
This criterion chooses the optimal α at the heel of the χ (α) curve
LAPLACE INVERSION 267
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FIG. 10. The fit error χ (α) for the Indiana limestone sample as a function
of α, normalized by the noise standard deviation in the original data.

(S-curve) which balances the residual fit error and the known
noise variance (10, 18). For simulated data without systematic
errors, the BRD method always converges to an optimal α that is
very close to the heel of the S-curve. We found that for the analy-
sis of experimental data with small systematic errors, the S-curve
method can be more robust than the BRD method. However, the
calculation will generally take longer since inversion must be
calculated for many values of α. For the Indiana limestone data,
the BRD method did not converge and the optimal α was ob-
tained by the S-curve method. For all other data sets, both BRD
and S-curve methods were used and similar α were obtained.

In Fig. 10, we show the fit error for the Indiana limestone
sample as a function of α from 10−3 to 1010, exhibiting the
classic S-curve. According to Eq. [9] the optimal α is chosen to
be 2.6, at the heel of the S-curve.

VI. CONCLUSIONS

We have demonstrated the use of a 2D Laplace inversion al-
gorithm that is fast and efficient and can be implemented on
desktop computers. The use of this algorithm will enable two-
dimensional relaxation correlation spectroscopy for the study
of molecular structures and dynamics. For example, it can be
used to study exchange phenomena similar to NOESY, and to
identify regions of the molecules with fast and slow dynamics
from the measurement of T1/T2. Furthermore, the algorithm is
not restricted to the exponential form of the kernel and can be
easily extended to other functional forms.
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